Achieving optimal tomato production levels using the downstream of production

Abstract

The productivity and sustainability of the tomato agriculture sub-sector is an essential aspect of tomato production. However, the problem that arises during the production period is the decline in the price of tomatoes during the harvest so as not to benefit the farmers, it affects the demotivation of production and environmental damage if not treated properly. Survey of this research was conducted on 100 tomato farmers in Kenayahan Selayo Tanang Bukik Sileh Solok. The data were processed using the production model and agricultural costs to observe the productivity and sustainability of the tomato agricultural sub-sector. The results showed that the input factor still decreased return to scale and productivity in the economy still need to be improved. The cost side is not economically efficient with low variable cost coefficients. Achievement of tomato production level optimally is done by downstream of tomato products. The scheme of this process is designed in the form of Development Planning Model of Environmentally Produced Tomato Center.

Keywords

Productivity, Sustainability, Decreasing Return to Scale, Cost Efficiency

References

  1. Ajibefun, I. . (2006). Cropping System. Technical efficiency and policy options: A Stochastic Frontier Analysis ofNigerian small-scale farmers. Q. J. Int. Agric., 45, 145–169.
  2. Altieri A., M. (1992). Sustainable Agrecultural Development in Latin America: exploring the possibilies. Elsivier Science Publisher.
  3. Amerasinghe, P., Bhardwaj, R. M., Scott, C., Jella, K., & Marshall, F. (2013). Urban wastewater and agricultural reuse challenges in India. IWMI Research Report, 147, 1–28.
  4. Ardi, Z., & Yendi, F. M. (2017). Students Attitude Towards LGBTQ; the Future Counselor Challenges. Jurnal Konseling Dan Pendidikan, 5(2), 74–79.
  5. Ardi, Z., Yendi, F. M., & Ifdil, I. (2013). Konseling Online: Sebuah Pendekatan Teknologi Dalam Pelayanan Konseling. Jurnal Konseling Dan Pendidikan, 1(1), 1–5.
  6. Azhar, Zul, U. N. P. (2013). Perencanaan Pembangunan (Konsep, Teori, Model, teknik, Aplikasi).
  7. Bamji, M. S. (2000). Diversification of agriculture for human nutrition. Curr. Sci.
  8. Barron, M. A., & Rello, F. (2000). The impact of the tomato agroindustry on the rural poor in Mexico. Agricultural Economics, 23(3), 289–297. https://doi.org/10.1016/S0169-5150(00)00090-6
  9. Brévault, T., & Bouyer, J. (2014). From integrated to system-wide pest management: Challenges for sustainable agriculture. Outlooks on Pest Management, 25(3), 212–213. https://doi.org/10.1564/v25_jun_05
  10. Daharnis, D., Ardi, Z., & Ifdil, I. (2018). The Improved of Counselor Competencies through Scientific Article Writing Training Using Digital Citation Application. Jurnal Konseling Dan Pendidikan, 6(1), 15.
  11. Devendra, C. (2013). Systems perspectives in agricultural education, research and development: A vision for sustaining food security in Asia. ASM Science Journal, 7(2), 152–165.
  12. Gbanie, S. P., Griffin, A. L., & Thornton, A. (2018). Impacts on the urban environment: Land cover change trajectories and landscape fragmentation in post-war Western Area, Sierra Leone. Remote Sensing, 10(1). https://doi.org/10.3390/rs10010129
  13. Gelcer, E., Fraisse, C. W., Zotarelli, L., Stevens, F. R., Perondi, D., Barreto, D. D., … Southworth, J. (2018). Influence of El Niño-Southern oscillation (ENSO) on agroclimatic zoning for tomato in Mozambique. Agricultural and Forest Meteorology, 248, 316–328. https://doi.org/10.1016/j.agrformet.2017.10.002
  14. Keatinge, J. D. H., Wang, J.-F., Dinssa, F. F., Ebert, A. W., Hughes, J. D. A., Stoilova, T., … Ravishankar, M. (2015). Indigenous vegetables worldwide: Their importance and future development. Acta Horticulturae, 1102, 1–20. https://doi.org/10.17660/ActaHortic.2015.1102.1
  15. Kumar, V., Jat, H. S., Sharma, P. C., Balwinder-Singh, Gathala, M. K., Malik, R. K., … McDonald, A. (2018). Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agriculture, Ecosystems and Environment, 252, 132–147. https://doi.org/10.1016/j.agee.2017.10.006
  16. Kusadokoro, M., Kagami, S., & Senda, T. (2016). Self-production of mulberry leaves and market participation of sericulture farmers in Prewar Japan. Studies in Regional Science, 46(3), 281–293. https://doi.org/10.2457/srs.46.281
  17. Len, P., Oleniacz, G., Skrzypczak, I., & Mika, M. (2017). Methodology for Assessing the Size and Liquidation of the Outer Patchwork of Land (Vol. 95). Presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/95/3/032020
  18. Lischeid, G. (2014). Landscape hydrology of rural areas: Challenges and tools. Environmental Science and Engineering (Subseries: Environmental Science), (202979), 107–113. https://doi.org/10.1007/978-3-319-01017-5_5
  19. Manyong, V.M.; Ikpi, A.; Olayemi, J.K.; Yusuf, S.A.; Omonona, B. T. . O., & V.; Idachaba, F. S. (2005). Agriculturein Nigeria: Identifying Opportunities for Increased Commercialization and Investment. . . IITA PublicationSeries: Ibadan, Nigeria, 159.
  20. Montgomery, F. A., Reid, S. M., & Mandrak, N. E. (2018). A habitat-based framework to predict the effects of agricultural drain maintenance on imperiled fishes. Journal of Environmental Management, 206, 1104–1114. https://doi.org/10.1016/j.jenvman.2017.11.087
  21. Muriu-Ng’ang’a, F. W., Mucheru-Muna, M., Waswa, F., & Mairura, F. S. (2017). Socio-economic factors influencing utilisation of rain water harvesting and saving technologies in Tharaka South, Eastern Kenya. Agricultural Water Management, 194, 150–159. https://doi.org/10.1016/j.agwat.2017.09.005
  22. Rattalino, E., Mourtzinis, S., Conley, S. P., Roth, A. C., Ciampitti, I. A., Licht, M. A., … Grassini, P. (2017). Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agricultural and Forest Meteorology, 247, 170–180. https://doi.org/10.1016/j.agrformet.2017.07.010
  23. Rimos, S., Hoadley, A. F. A., & Brennan, D. J. (2015). Resource depletion impact assessment: Impacts of a natural gas scarcity in Australia. Sustainable Production and Consumption, 3, 45–58. https://doi.org/10.1016/j.spc.2015.08.003
  24. Singh, S. (2000). Contract farming for agricultural diversification in the India Punjab: A study of performance andproblems. Indian J. Agric. Econ. 2.
  25. Van den Berg, M.M.; Hengsdijk, H.; Wolf, J.; Ittersum, M.K.V.; Guanghuo, W. ., & Roetter, R. . (2007). The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province. China. Agric. Syst.
  26. Warziniack, T. (2014). A general equilibrium model of ecosystem services in a river basin. Journal of the American Water Resources Association, 50(3), 683–695. https://doi.org/10.1111/jawr.12211
  27. Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., & Balmford, A. (2017). Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Global Change Biology, 23(12), 5260–5272. https://doi.org/10.1111/gcb.13791
  28. Yaron, G. (1998). Alternative Land Use Options in the Mount Cameroon Region: An Economic Analysis. The Centre for Social and Economic Research on the Global Environment.
  29. Yildiz, H., Duhadway, S., Narasimhan, R., & Narayanan, S. (2016). Production planning using evolving demand forecasts in the automotive industry. IEEE Transactions on Engineering Management, 63(3), 296–304. https://doi.org/10.1109/TEM.2016.2560162

DOI : https://doi.org/10.29210/20181127